Utah FORGE announces 17 project selectees for negotiations for solicitation 2020-1

Utah FORGE Chooses 17 Selectees to Begin Negotiations:

  • University of Utah to award $46 M for research in Enhanced Geothermal System development
  • 17 selectees chosen to enter negotiations in 5 topic areas

SALT LAKE CITY, UT., Feb. 24, 2021 – The Utah Frontier Observatory for Research in Geothermal Energy (FORGE) at the University of Utah is pleased to announce it has chosen 17 project selectee applications for negotiations for the FORGE Solicitation 2020-1. The selectees could receive a combined total of up to $46 M over the next 3 years.

The topic areas and the selectees include:

Topic # and TitleFunding LevelAwardsAwardee
Topic 1: Devices suitable for sectional (zonal) isolation along both cased and open-hole wellbores under geothermal conditions$12 Million1 to 3Welltec; PetroQuip Energy Services; Colorado School of Mines
Topic 2: Estimation of stress parameters$3 Million1 to 3Battelle Memorial Institute
Lawrence Livermore National Laboratory
University of Oklahoma
Topic 3: Field-scale characterization of reservoir stimulation and evolution over time, including thermal, hydrological, mechanical, and chemical (THMC) effects$8 Million1 to 4Clemson University
Stanford University
Lawrence Berkeley National Laboratory
Rice University
Topic 4: Stimulation and configuration of the well(s) at Utah FORGE$12 Million1 to 3Fervo Energy Company
University of Texas at Austin
Topic 5: Integrated Laboratory and Modeling studies of the interactions among THMC processes$11 Million1 to 6Pennsylvania State University
Lawrence Livermore National Laboratory
US Geological Survey
University of Oklahoma
Purdue University

“There is enormous untapped potential for enhanced geothermal systems (EGS) to provide clean and reliable electricity generation throughout the United States,” said Dr. Kathleen Hogan, Assistant Deputy Under Secretary for Science. “These investments in EGS research support President Biden’s mission to take on the climate crisis by pushing the frontiers of science and engineering and creating jobs in cutting-edge clean energy fields.”

Utah FORGE is a dedicated underground field laboratory sponsored by the U. S. Department of Energy’s Geothermal Technologies Office. It is working on developing, testing, and accelerating breakthroughs in EGS. Solicitation 2020-1 was the first formal call for research proposals on EGS technologies from the Utah FORGE Program. More information about Solicitation 2020-1 is available HERE.

“Utah FORGE looks forward to collaborating closely with the scientists and engineers of the project teams on technologies that will promote commercialization of this inexhaustible and non-polluting energy source,” said Joseph Moore, Ph.D. and Principal Investigator of the Project. “We were impressed with the caliber of all of the applicants who submitted proposals and anticipate additional solicitations in the future.”

To download the official press release follow this LINK

 

Utah FORGE and UofU’s Department of Communication partner up

In yet another example of inter-departmental collaboration, Utah FORGE, a geothermal energy research project, is delighted to be working closely with Dr. Sara K. Yeo in the University’s Department of Communication, within the College of Humanities.

The research being conducted by Utah FORGE near the town of Milford is focused on enhanced geothermal systems (EGS) technologies. The project is testing the tools and technologies to develop a geothermal resource where none exists naturally. If successful, these methods can be applied virtually anywhere in the world, providing a clean, inexhaustible energy source.

Harnessing the potential of geothermal energy could provide a great boost to the nation’s energy portfolio. Indeed, scientists suggest if we can tap just 2% of the energy found between 2 and 6 miles below the Earth’s surface, we would have more than 2000 times the energy used in the U.S. every year. It is literally the heat beneath our feet.

Public surveys indicate, however, that most people don’t know much about geothermal energy, and it’s seldomly included in discussions about renewable energy sources.  To better understand the current level of understanding and familiarity with geothermal energy, Utah FORGE is working with Dr. Yeo on a capstone course which includes surveying individuals about their awareness, knowledge, and opinions of geothermal energy.

“This is a unique opportunity for the students to put into practice the theories we discuss in class,” said Sara K. Yeo, Ph.D. and the professor conducting the capstone. “With the collaboration of the Utah FORGE team, the students developed the questions and determined the scope of the survey.”

“Our collaboration with Dr. Yeo is an exciting aspect of this project. It will provide us with a baseline from which we can judge the progress of our efforts to educate the public about geothermal energy and EGS,” said Joseph Moore, Ph.D., principal investigator of the project.

The 15-20-minute survey includes questions seeking to ascertain the public’s general understanding of geothermal energy and EGS. Responses are being obtained from 1000 individuals in 11 states across the western U.S. The capstone course will be repeated in the Fall Semester of 2021 to allow for a longitudinal data set to be created.

The Utah FORGE project is being managed by the Energy & Geoscience Institute at the University of Utah. Funding for the project is being provided by the US Department of Energy. It is one of the largest non-medical grants the University of Utah has ever received.

The University of Utah is no stranger to geothermal energy – it is purchasing 20 megawatts of geothermal electricity annually from Cyrq Energy, a geothermal developer actively working in Utah and Nevada.  Additionally, the Gardner Commons Building is entirely powered by that geothermal energy located just beneath our feet. With nearly half of its energy needs being met by renewable sources, the University of Utah is ranked eighth in the Green Power Partnership Top 30 College & University rankings.

 

December 22, 2020

Drilling Progress of Well 16A(78)-32

Current Ongoing Progress Updates:

The Utah FORGE team has started drilling its first highly deviated deep well. Highly deviated wells are frequently drilled for oil and gas production, but not by the geothermal industry. The Utah FORGE team will be one of the first to tackle this challenge while drilling in hot, hard crystalline granite.

Well 16A(78)-32 is the first deviated well to be drilled and it will take the next 4 months. The well spudded early morning on October 30th.

UPDATE November 9

Drilling has proceeded smoothly and advanced to almost 5,000' depth. The basement contact was crossed on Saturday, October 7 at about 4600' depth as anticipated.

UPDATE November 19

Drilling is proceeding on schedule, though at a slower rate, now that we are going through the hard basement granitic rock. Currently we have paused at 5,500' (half way to the 11,000 ft planned) to run an 18hr temperature survey.

UPDATE November 25

Well 16A(32)-78 is currently partway through the build, at a measured depth of about 6300 ft.  We successfully ran a temperature survey, an image log (UBI) and collected approximately 56 ft of core. The static temperature recorded at a depth of 5,501 ft depth is close to 300°F. Drilling the first part of the curve proceeded at about 30 ft/hr.

UPDATE December 1

Reached 7, 320 ft MD and now drilling into the tangent section of the well. TVD at 7, 031 ft.

Drilling completed - READ MORE

Overview of the Utah FORGE site and the 16A(78)-32 drill pad.

Drilling first deep well announcement

Utah FORGE Drills First of Two Deep Wells

The Utah Frontier Observatory for Research in Geothermal Energy (FORGE), is excited to announce that the drilling of its first highly deviated deep well has commenced. Highly deviated wells are frequently drilled for oil and gas production, but not by the geothermal industry. The Utah FORGE team will be the first to tackle this challenge while drilling in hot, hard crystalline granite.

The upper part of the well will be drilled vertically through approximately 4,700 feet of  sediments at which point it will penetrate into hard crystalline granite. At about 6,000 feet, the well will be gradually steered at a 5° angle for each 100 feet until it reaches an inclination of 65° from its vertical point. The total length of the well will be approximately 11,000 feet with the “toe” – or the end of the well – reaching a vertical depth of 8,500 feet. The temperature at this depth will be 440°F.

“This is an exciting phase in the Utah FORGE project and is key to proving Enhanced Geothermal Systems (EGS) technologies are commercially viable” said Joseph Moore, PhD, and Principal Investigator of Utah FORGE.

The goal of our research is to test tools and technologies for the creation of a geothermal resource where none exists naturally. Developing cost effective EGS technologies is an important step in capturing the enormous energy potential beneath our feet and bringing low cost, environmentally green, and renewable energy across the United States.

Once the well is completed, a series of tests will be run to facilitate the development of the EGS resource. Some of the tests will include determining the stress conditions through short-term injection experiments, during which microseismicity will be carefully monitored. Other tests will allow for the interpretation of the orientation and distribution of the existing and induced fractures in the granite, which will form the pathways for water to circulate and heat up in the newly created EGS reservoir.

The results of these tests and R&D activities will be used to plan the second deviated well. Drilling of the second well is tentatively scheduled for early 2022.

Open Press Release HERE

Partner Spotlight – GRG

Geothermal Resource Group (GRG) is a geothermal resource and engineering consulting company that has provided consulting engineering and on-site management services in over 16 countries and at over 95 geothermal development projects worldwide. They have been a partner in the FORGE Utah project since the beginning, providing technical and design advice, and planning and supervision in the drilling of all deep wells, including 58-32, 68-32 and 78-32. They are currently working on the design of the first deep deviated well which will commence later this year.

GRG plays a critical role in the management, organization and running of a range of pre- and post-drilling and stimulation activities to ensure that project managers, contractors, and researchers are well informed of scheduling and onsite activities. A key goal is to ensure that everyone involved is fully briefed on the operations so that all tasks are executed to the highest professional and technical standard an in a timely manner that keep the project on schedule and within budget.

In Phase 3, GRG is working within the drilling team to specify the materials needed for the planned deep, highly deviated, injection well that represents one of the pillars of the Utah FORGE research facility. This involves many considerations that are not typical to conventional geothermal wells. In addition, specifications are being prepared for the drilling of additional seismic monitoring holes, as are plans for supervision of field activities later this year.

GRG’s involvement with Utah FORGE is led by Principal Drilling Engineer Bill Rickard, Senior Engineer Ernesto Rivas, and Geologist Mary Mann. GRG brings with them many decades of cutting edge expertise hard granite drilling technology, and they were instrumental in the drilling and completion of deep wells at Newberry and Raft River. GRG is excited to be a part of the Utah FORGE project and looks forward to ensuring continued drilling successes.

Modeling and Simulation Forum #1 RECORDING

The inaugural Modeling and Simulation Forum was held on April 15, 2020 and if you weren't able to participate you can check out the video recording of the webinar below.

Topics that were covered included an overview of the Utah FORGE project, a description of the numerical methods and codes that have used, a summary of modelling results dealing with discrete fracture network, the distribution of stress, and the planning of well trajectories.

Download the PDF of the slides:

20200415_MSForum-post

This will be a recurring event to keep the EGS community updated on our activities and, most importantly, to gain the community's feedback.

For more information about upcoming webinars visit the Modeling and Simulation Forum page

For news, special announcement about the Utah FORGE project activities please SUBSCRIBE