Did You Know … you could have a swig of geothermal rum in the near future?

Did you know ... that you could have a swig of geothermal rum in the near future?

In Cornwall, United Kingdom, Matthew Clifford has big dreams to start up a rum distillery powered solely by the natural geothermal resources. Alcohol distillation takes up a lot of energy, so Clifford decided that he would attempt to power his idea with the heat from under the ground.

In the rum production process, energy is expended 24/7 and the need to keep everything temperature controlled can be extremely intensive over the long period of time that’s required to produce alcohol. Therefore, the Celsius Project had the idea to power the process with geothermal energy. Geothermal is available around the clock regardless of outdoor conditions or energy shortages, perfectly fitting the needs for distilling alcohol.

In Cornwall, the rocks under ground are hotter than anywhere else in the United Kingdom, which is why Clifford targeted that area for his project. The Celsius Project plans to use the heat from the “hot rocks” to heat the buildings needed for production and storage. They also have plans to use the “waste heat”, which is the by-product of turning the energy generated from the geothermal power into electricity. Their goal is to produce zero-carbon renewable power once the site is up and running.

Unfortunately, the project ran into a bit of a snag which has forced the owner to look for a different location. The original project site at the United Downs in Cornwall has been in disrepair for many years and has partially been used as a landfill. Although the plan was originally approved, the proposal received resistance when fans of stock car racing stepped in. A portion of United Downs is a raceway beloved by many racing fans in the area. The Cornwall Council stepped in and told Clifford he could not build the distillery there, despite already having received approval a few months prior.

Now, the Celsius Project is without a home. There has not been a new site chosen yet, and the project has moved into a smaller version of itself inside a handful of shipping containers, which are currently housed near Penryn. While a geothermal rum toast for New Year’s 2023 was unavailable, if Clifford is able to find a new location to permanently house the project and get it off the ground, there may be a chance ‘hot’ rum could be available for New Year’s Day, 2024.

We’ll drink to that!









Did You Know … that Scottish clubbers use dance beat to generate heat

Did you know ... that Scottish clubbers use dance beat to generate heat?

In Glasgow, Scotland, dancers are taking “the heat beneath their feet” to a whole new level. An innovative technology is able to harness the energy produced by dancing clubbers and turn it into a way to heat the building.

The SWG3 nightclub has committed to going net-zero carbon emissions by 2025, and their plan for a one-of-a-kind heat pump system is a huge part of that. After being concerned with their emissions output, the nightclub’s management started to think of ways that they could reduce their footprint. After lots of meetings and planning, one idea became this new heat pump system, now known as Bodyheat.

Bodyheat works by taking the hot air inside the venue, generated by the movement of dancing clubbers, and pumping it underground. The heat is used to warm up a carrier fluid, which is then sent through a series of pipes into twelve 500-foot-deep boreholes and stored in a rock serving as a thermal battery. A typical cooling system would take the hot air and pump it outside into the atmosphere, but SWG3 puts that heat underground instead.

When it’s time to use it. the heat travels back into the pipes, back up above ground to the heat pumps, and used to heat the event spaces and provide hot water for the venue. SWG3 is used as an art display gallery and office space during daytime hours, which is when the heat, created by the clubbers, is used.

The nightclub invested about $670,000 into developing and installing this technology, but SWG3 projects that the savings on energy bills can offset that cost in about five years, saving them money in the long run.

David Townsend, founder of TownRock Energy, a company that helped develop Bodyheat, says that different types of music can generate different levels of energy. For example, the Rolling Stones are considered a middle-of-the-pack producer. One can get about 250 watts over the course of a song when playing the Stones. An experienced DJ could get up to 600 watts with the right song at the right time. The more excited and into the music the crowd gets, the more energy is available for harvesting.

Storing the energy produced by the movement of the body could be revolutionary. A similar system could be implemented in places like gyms, indoor sporting events, concert venues, or anywhere else where people are dancing or jumping up and down.

In terms of moving SWG3 towards their carbon-neutral goal, the Bodyheat system could reduce the nightclub’s outputs by around 60-70%. SWG3 is completely eliminating their gas boilers because of it. If the technology could be implemented in other locations around the world, it could help reduce the total amount of resources spent on heating buildings and allow the world to lower its carbon footprint.









SSA Annual Meeting 2023

Announcing SSA session

De-risking Deep Geothermal Projects: Geophysical Monitoring and Forecast Modeling Advances

Co-conveners: Federica Lanza, Kristine Pankow, David Eaton, Nori Nakata, Ryan Schulz, Annemarie Mutendam-Bos

We seek contributions from EGS projects and field test sites that focus on geophysical technologies applied to geothermal energy, such as real-time monitoring and characterization of induced seismicity, distributed acoustic sensing, large-N array, active surface seismic, vertical seismic profiling, seismic imaging of faults and fracture zones, laboratory experiments and novel instrumentation. We also welcome submission of abstracts on modeling studies at all scales, seismicity forecasting models, hazard and risk analysis studies as well as presentations dealing with good-practice guidelines and risk assessment procedures that would help in reducing commercial costs and enhancing the safety of future geothermal projects.

Please consider submitting your abstract to our session before the deadline on 11 January 2023, at 5 p.m Pacific. 

Detailed information on how to submit an abstract can be found at: https://meetings.seismosoc.org/submit/


Hope to see you in San Juan!