Partner Spotlight – GRG

Geothermal Resource Group (GRG) is a geothermal resource and engineering consulting company that has provided consulting engineering and on-site management services in over 16 countries and at over 95 geothermal development projects worldwide. They have been a partner in the FORGE Utah project since the beginning, providing technical and design advice, and planning and supervision in the drilling of all deep wells, including 58-32, 68-32 and 78-32. They are currently working on the design of the first deep deviated well which will commence later this year.

GRG plays a critical role in the management, organization and running of a range of pre- and post-drilling and stimulation activities to ensure that project managers, contractors, and researchers are well informed of scheduling and onsite activities. A key goal is to ensure that everyone involved is fully briefed on the operations so that all tasks are executed to the highest professional and technical standard an in a timely manner that keep the project on schedule and within budget.

In Phase 3, GRG is working within the drilling team to specify the materials needed for the planned deep, highly deviated, injection well that represents one of the pillars of the Utah FORGE research facility. This involves many considerations that are not typical to conventional geothermal wells. In addition, specifications are being prepared for the drilling of additional seismic monitoring holes, as are plans for supervision of field activities later this year.

GRG’s involvement with Utah FORGE is led by Principal Drilling Engineer Bill Rickard, Senior Engineer Ernesto Rivas, and Geologist Mary Mann. GRG brings with them many decades of cutting edge expertise hard granite drilling technology, and they were instrumental in the drilling and completion of deep wells at Newberry and Raft River. GRG is excited to be a part of the Utah FORGE project and looks forward to ensuring continued drilling successes.


Renowned for technical excellence, Golder is a leading, global employee-owned engineering and consulting firm with over a half century of successful service to its clients. With over 165 offices, Golder’s 7,500 professionals are driven by a passion to deliver results, offering unique specialized skills to address the ever-evolving challenges that earth, environment and energy present to clients across the infrastructure, mining, oil and gas, manufacturing and power sectors.

Golder’s contribution to FORGE has been to use our FracMan® software to analyze data from a test well to develop a model of the fractures in the target rock mass. The test well yielded data on the natural fractures that exist in the rock mass, and the hydraulic properties of those fractures. The rock surrounding the wells at the appropriate depth will be subjected to hydraulic fracturing to improve the fluid-carrying ability of the natural fractures. The models developed by Golder are being used to predict how the reservoir rock will respond to hydraulic fracturing and to simulate the long-term thermal response of the site. Over the course of the FORGE program, Golder will continue supporting teams of researchers using a variety of technologies to develop viable, commercially feasible solutions for geothermal energy.

Click here to read more about Golder’s work with FORGE



INL and Modeling Research for the Utah FORGE Project

The Idaho National Laboratory has joined the Utah FORGE project at the downselect of the Milford, Utah site as the DOE's FORGE laboratory choice location.

The modeling team from INL headed by Dr. Robert Podgorney has been on the forefront of constructing an earth model for the project

Read more HERE

Professor Ahmad Ghassemi

Professor Ahmad Ghassemi represents the University of Oklahoma as a Utah FORGE partner. He leads the Reservoir Geomechanics and Seismicity Research (RGSR) Group, which investigates reservoir geomechanics in geothermal and petroleum systems. He is part of the Mewbourne School of Petroleum and Geological Engineering at the University of Oklahoma (OU), which is rated among the top petroleum engineering programs in the nation, and it has had a large impact in research and development since the late 1980’s. Today, the program is recognized for its world-class experimental and numerical modeling infrastructures, which has important applications for geothermal research and development of EGS-type reservoirs.

Professor Ghassemi’s group focuses on understanding the dynamics of reservoir rocks and fracture networks in response to hydraulic, poroelastic, thermal, and chemical stimulations. The aim of this work is to facilitate economic production of the nation's vast geothermal resources through development of effective completions and stimulation techniques. Active topics of research include:

  • Stimulation Optimization using Geologic and Geomechanics Principles
  • Modeling Fracture Clusters in Geothermal Reservoirs
  • Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity
  • Variation of In-situ Stress, and Fracture Slip in Response to Injection/Production
  • Optimum Wellbore Trajectory and Wellbore Stability Analysis
  • Experimental and Numerical Investigation of Coupled Poro-thermo-chemo-mechanical Analysis of Fracture Permeability

This research is conducted in partnership with the geothermal industry, and in collaboration with the National Laboratories.

Professor Ghassemi’s research at Utah FORGE addresses reservoir characterization, hydraulic fracturing design, diagnostic fracture induced testing (DFIT) in fracture rock, and other stress in-situ stress determination methods. In addition to providing experimental expertise to assess rock and fracture characteristics, and the potential impact of shear and mixed-mode stimulation, we contribute to stimulation design optimization using the GeoFrac family of thermo-poromechanical hydraulic fracturing and fracture network models that have been developed for large-scale studies.  The 2D version of GeoFrac considers rock anisotropy and natural fractures including their slip and propagation to form a network. The 3D version called GeoFeac3D incorporates rock heterogeneity and non-linearity, allows for poroelasticity, thermoelasticity, and mixed-mode propagation, and can be used to model multiple hydraulic fractures involving proppant transport and heat extraction. These will be used to help future stimulation design at FORGE.

The RGSR group has a world-class rock mechanics facility consisting of a number of MTS Material Testing Systems, 3 Polyaxial Testing units, 1 TTK Triaxial Test System, 1 Creep Test System, 1 API Fracturing Conductivity Test System, 3D laser Scanning System, etc. In addition to conventional rock mechanics testing such as uniaxial/triaxial compressive, static/dynamic, tensile strength, AE monitoring, hardness, fracture conductivity,  advanced/novel rock mechanics tests are used to evaluate large-scale hydraulic fracturing under true triaxial conditions, tracer performance, high temperature and high pressure effects, triaxial shear, direct shear, and fracture propagation and coalescence.  Currently, there are nine graduate students and two post-docs involved in the modeling and experimental work in the group.