Did You Know … the story of the snake, the fish, and the toad?

Did you know… the story of the 'hot' snake, the fish, and the toad?

Tucked away in different corners of the planet, there are animals with unique adaptations that allow them to thrive in some rather surprising environments. Despite the extreme conditions and challenges, certain species are even able to make hot waters their permanent home.

The Tibetan Hot-Spring Snake (photo Science)

Take for example the Tibetan Hot-Spring snake. This snake is exactly what it sounds like: a snake that lives in the hot springs of Tibet, high in the mountains, where the weather is very cold. Like other reptiles, snakes are ectothermic, or cold blooded, meaning they do not regulate their own body temperature and rely on the external environment to do so. Most reptiles will sunbathe or hide underground to stay warm, but the Tibetan Hot-Spring snake achieves the same outcome in a rather unusual way. By living in the warm waters of the natural hot springs occurring in the area, these amazing reptiles can stay heated year-round.

The Hot-Spring snake has a special adaptation found in their genome; a gene called EPAS1. This gene makes them much more sensitive to heat sources as compared to their close relatives, allowing them to seek out the hot water much more easily. They have been observed leaving hot springs to travel to rivers and colder lakes to feed on the fish and other small creatures living there, and then navigating back to the hot springs afterwards using their heat-seeking senses.

The Julimes pupfish (Wikipedia)

These snakes aren’t the only animals that are able to survive and thrive in hot waters - a small species of fish in Mexico can live in super-hot water up to 114 degrees Fahrenheit. The Julimes pupfish lives full-time in the area’s hot springs, earning it the title of “the world’s hottest fish.” These pupfish could be considered “extremophiles”, animals who are able to tolerate very harsh conditions. Imagine living your whole life hotter than the hottest hot tub!


Dixie Valley toad (photo Washington Post)

Finally, there is the Dixie Valley toad. This toad has specifically adapted to survive in the warm waters around the Dixie Valley in a remote area near Reno, Nevada. When it was discovered and described in 2017, it became the only new species of toad discovered in the US in nearly 50 years.

Most toads spend the colder months underground in burrows so that they don’t freeze along with the water around them. The Dixie Valley toad doesn’t burrow, instead it remains in the warm springs all winter long. The toads prefer the warm water over any other options for heat that may be available to them. It must work for them, since they have been thriving in the springs for thousands of years.

These animals are great examples of how even though conditions may be harsh and seemingly inhospitable, it’s good to remember the timeless words of Dr. Ian Malcolm from Jurassic Park: “Life finds a way.”















Did You Know … you could have a swig of geothermal rum in the near future?

Did you know ... that you could have a swig of geothermal rum in the near future?

In Cornwall, United Kingdom, Matthew Clifford has big dreams to start up a rum distillery powered solely by the natural geothermal resources. Alcohol distillation takes up a lot of energy, so Clifford decided that he would attempt to power his idea with the heat from under the ground.

In the rum production process, energy is expended 24/7 and the need to keep everything temperature controlled can be extremely intensive over the long period of time that’s required to produce alcohol. Therefore, the Celsius Project had the idea to power the process with geothermal energy. Geothermal is available around the clock regardless of outdoor conditions or energy shortages, perfectly fitting the needs for distilling alcohol.

In Cornwall, the rocks under ground are hotter than anywhere else in the United Kingdom, which is why Clifford targeted that area for his project. The Celsius Project plans to use the heat from the “hot rocks” to heat the buildings needed for production and storage. They also have plans to use the “waste heat”, which is the by-product of turning the energy generated from the geothermal power into electricity. Their goal is to produce zero-carbon renewable power once the site is up and running.

Unfortunately, the project ran into a bit of a snag which has forced the owner to look for a different location. The original project site at the United Downs in Cornwall has been in disrepair for many years and has partially been used as a landfill. Although the plan was originally approved, the proposal received resistance when fans of stock car racing stepped in. A portion of United Downs is a raceway beloved by many racing fans in the area. The Cornwall Council stepped in and told Clifford he could not build the distillery there, despite already having received approval a few months prior.

Now, the Celsius Project is without a home. There has not been a new site chosen yet, and the project has moved into a smaller version of itself inside a handful of shipping containers, which are currently housed near Penryn. While a geothermal rum toast for New Year’s 2023 was unavailable, if Clifford is able to find a new location to permanently house the project and get it off the ground, there may be a chance ‘hot’ rum could be available for New Year’s Day, 2024.

We’ll drink to that!









Did You Know … that Scottish clubbers use dance beat to generate heat

Did you know ... that Scottish clubbers use dance beat to generate heat?

In Glasgow, Scotland, dancers are taking “the heat beneath their feet” to a whole new level. An innovative technology is able to harness the energy produced by dancing clubbers and turn it into a way to heat the building.

The SWG3 nightclub has committed to going net-zero carbon emissions by 2025, and their plan for a one-of-a-kind heat pump system is a huge part of that. After being concerned with their emissions output, the nightclub’s management started to think of ways that they could reduce their footprint. After lots of meetings and planning, one idea became this new heat pump system, now known as Bodyheat.

Bodyheat works by taking the hot air inside the venue, generated by the movement of dancing clubbers, and pumping it underground. The heat is used to warm up a carrier fluid, which is then sent through a series of pipes into twelve 500-foot-deep boreholes and stored in a rock serving as a thermal battery. A typical cooling system would take the hot air and pump it outside into the atmosphere, but SWG3 puts that heat underground instead.

When it’s time to use it. the heat travels back into the pipes, back up above ground to the heat pumps, and used to heat the event spaces and provide hot water for the venue. SWG3 is used as an art display gallery and office space during daytime hours, which is when the heat, created by the clubbers, is used.

The nightclub invested about $670,000 into developing and installing this technology, but SWG3 projects that the savings on energy bills can offset that cost in about five years, saving them money in the long run.

David Townsend, founder of TownRock Energy, a company that helped develop Bodyheat, says that different types of music can generate different levels of energy. For example, the Rolling Stones are considered a middle-of-the-pack producer. One can get about 250 watts over the course of a song when playing the Stones. An experienced DJ could get up to 600 watts with the right song at the right time. The more excited and into the music the crowd gets, the more energy is available for harvesting.

Storing the energy produced by the movement of the body could be revolutionary. A similar system could be implemented in places like gyms, indoor sporting events, concert venues, or anywhere else where people are dancing or jumping up and down.

In terms of moving SWG3 towards their carbon-neutral goal, the Bodyheat system could reduce the nightclub’s outputs by around 60-70%. SWG3 is completely eliminating their gas boilers because of it. If the technology could be implemented in other locations around the world, it could help reduce the total amount of resources spent on heating buildings and allow the world to lower its carbon footprint.